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NT OMS/RCS Overview
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• NT OMS/RCS Basic System Design
–Pressure-Fed System at 250 - 350  

psia
• LO2 and Ethanol 

–Cryogenic RCS Feedsystem Principle 
of Operation

• Subcooled Liquid Oxygen
• Loaded at 14.7 psia and 163 R
• Then Pressurized to 250 - 350 psia
• Results in ~70 - 80  R subcooling

• Test and Analysis Objective 
– Demonstrate cryogenic RCS 

manifold under flight-like thermal 
conditions to observe effects of:

• Maintain Subcooled liquid at 
thruster inlet

• Measure Heat soak-back from 
thruster injector plate

–Validate Sinda Fluint Model of 
cryogenic feedsystem

–Use Manifold design for WSTF tests
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CRFT Modeling and Analysis

• CRFT model used as analysis tool
– examine effects of changes to test article 
– project LOX performance from LN2 test data

• SINDA/FLUINT thermal and fluid model of test article started in Summer 2000
• Testing of feedsystem thermal performance began December of 2000
• Model was improved and correlated to test results

– Full transient simulation of feedsystem may be performed with changes to 
key variables such as:

• Valve control logic (temperature set points)
• Supply tank pressure and temperature
• Working fluid

– Test data supported simplification of thermal model-(long model run-times 
were no longer a hindrance)

– More variables were taken into account to make model resemble the 
as-tested feedsystem

– Analyses of system reconfigurations were made
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CRFT Modeling Objectives and Results

• Objectives / Results
– Investigate Poor Performance of MLI wrapped feedline

• High Interstitial pressure in MLI caused by high 
Chamber Pressure of 1 x 10-4 torr

• Need to increase from 15 layers to 30 layers
• MLI perhaps compressed too much

– Investigate Thruster Thermal Isolator:
• Need radiation shields in thruster thermal isolator
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CRFT Fluid Model
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CRFT Thermal Model
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CRFT Model Matched to Test Data
Test dataModel

• Model matched to steady-state performance (heat-up/cool-down cycle)
• Temperature gradient established from injector plate (540 °R) to Micarta plate (470 °R)
• Flow rates and manifold pressures correlated to test data
• MLI conductivity values used at test chamber pressure (10-4 torr)
• Effects of un-insulated components and contact resistances added
• Boundary conditions (vaporization) in bleed line were difficult to model
• Two phase fluid modeled
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Thermodynamic Comparison of 
LN2 and LOX

68.47 lb/ft343.57 lb/ft3Density

0.410 Btu/lb-°R0.533 Btu/lb-°RSpecific Heat (at 330 psia, 180 ° R)

243.8 °R212.4 ° RSat. Temp. (at 330 psia)

162.3 °R139.2 °RSat. Temp. (at 14.7 psia)

LOXLN2

Sources: Thermophysical Properties of Nitrogen, NBS, 1973
Thermodynamic and Related Properties of Oxygen, NBS, 1977

• Specific heat capacity of nitrogen 1.3 times greater than oxygen
• Density of oxygen 1.6 times greater than nitrogen
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Extrapolation by Analysis Shows Vent Rate of 1.6 lbm/hour for 
LO2 Feedsystem

Liquid Oxygen Projections
24-hr runs
High Setpoint 204 R Cycles Through-put Heat-up Cool-down Interconnect temp

Low Setpoint (R) (lbm/hrs) (min:sec) (min:sec) max (deg R)
174 9 4.7 130:31 1:45 172-steady
184 24 2.4 45:19 0:18 174-rising
194 46 1.6 22:14 0:07 175-rising

"steady-state"nominal inlet conditions

• Results
– Interconnect line temperature rise ~12 deg °R, at 

pressure this is still 70 °R of sub-cooling
– Minimal bleed flow needed to maintain nominal 

thruster inlet conditions (below 204 °R)
– Each conditioning method expels less than daily 

vernier through-put (roughly 130-160 lbs)
– For normal operation of RCS system, venting or 

other active thermal control might not be 
required

– Cryogenic feedsystem must demonstrate long 
periods of quiescent operation (docked to ISS)

• Liquid oxygen system analysis performed
• Initial conditions:

– LOX lines sub-cooled to 163 °R
– Supply tank maintained at 163 °R
– Thermal gradient set up through valve 

simulators
• 24-hr run time
• Different temperature ranges tested
• Nominal system: MLI performance, thruster 

inlet conditions
• Flow out of vent line: 0.15 lbm/sec when 

cycled
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Conclusion / Forward Plan

• Basic Operation of Cryogenic Feedsystem demonstrated
– Successfully Maintained sub-cooled bulk liquid in 110 ft VJ Line for  

long durations
• 60 Hours Demonstrated under no flow (2 deg R per 3 hours)

• Several Improvements Require retest
• Extrapolation by Analysis for LO2 shows that 1.6 lbm/hour vent rate is 

possible which correlates to 4.8 lbms/hour for Shuttle sized vehicle
– Maintains fluid between 163 R and 204 R
– 4.8 lbms per hour is approx. equal to the average vernier flowrate 

of 4 - 7 lbm/hour
– Hence, minimal venting will be required in flight
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